Stat 230

Homework Problem Set 5

Due Jun 12 12:30 pm EST.

Please justify your answers and show the steps that lead you to your answer. Without a proper explanation, even a perfectly correct answer will receive a low score. Doubts regarding the problem sets/ Problem setup can be posted on Piazza. Simplify the expressions whenever you can.

Pr. 1 (15 pts)

Mike and Alice meet a cafe at 5 pm. The arrival time of Alice is uniformly distributed 4:45 and 5:15, and the arrival time of Mike is unformly distributed between 4:30 and 5:30.

What is the probability that either of the two has to wait longer than 5 minutes for the other person to arrive?

Pr. 2 (15 pts)

Two discrete random variables X and Y have the following joint distribution:

	$\Pr(X = -1)$	$\Pr(X=0)$	$\Pr(X=1)$
$\Pr(Y=2)$	1/12	1/6	1/12
$\Pr(Y=4)$	1/6	0	1/6
$\Pr(Y=8)$	0	1/3	0

- a) Show that X and Y are not independent. (5 pts)
- b) Could there be a probability distribution (X', Y') such that all of the following are met (10 pts):
 - 1) The marginal distribution of X' matches that of X;
 - 2) The marginal distribution of Y' matches that of Y;
 - 3) X' and Y' are independent?

Give the distribution of (X', Y') or justify why there cannot be such distribution.

Pr. 3 (20 pts, 5 pts each)

Let P be a random point chosen uniformly at random inside the square with corners (-1, -1), (-1, 1), (1, 1), (1, -1). Let X be the x-coordinate of P, and Y be the y-coordinate of P.

- a) Give a mathematical expression (density) for the joint distribution of (X, Y)
- b) What is the probability $X^2 + Y^2 < 1$?
- c) What is the probability that |X + Y| < 2?
- d) What is the probability that 2X Y < 0?

Pr. 4 (20 pts)

Two discrete random variables X and Y have the following joint distribution:

(X, Y)					X			
		0	1	2	3	4	5	6
Y	0	c	С	С	С	0	0	0
	1	0	c	c	c	c	0	0
	2	0	0	c	c	c	c	0
	3	0	0	0	c	c	c	c

- a) What is the value of c for this to be a well-defined joint probability distribution? (5 pts)
- b) Calculate $\mathbb{E}(X)$, $\mathbb{E}(Y)$, $\mathbb{E}(X+Y)$ and $\mathbb{E}(XY)$. (10 pts)
- c) Could there be a pair of random variables (X', Y') such that all of the following are met: (5 pts)
 - 1) The expectation $\mathbb{E}(X')$ matches $\mathbb{E}(X)$;
 - 2) The expectation $\mathbb{E}(Y')$ matches $\mathbb{E}(Y)$;
 - 3) The expectation $\mathbb{E}(Y' + X')$ matches $\mathbb{E}(Y + X)$;
 - 4) The expectation $\mathbb{E}(Y'X')$ matches $\mathbb{E}(YX)$;
 - 5) X' and Y' are independent?

Give such distribution or justify why there cannot be such distribution.

Pr. 5 (30 pts, 5 each)

The random variables X and Y have joint density function

$$f_{X,Y}(x,y) = \begin{cases} cxy(1-x), \ 0 < x < 1, 0 < y < 1\\ 0 \quad \text{otherwise.} \end{cases}$$

- a) What is the value of c for this to be a well-defined probability distribution?
- b) Are X and Y independent?
- c) Find $\mathbb{E}[X]$.
- d) Find $\mathbb{E}[Y]$.
- e) Find $\operatorname{Var}(X)$.
- f) Find Var(Y).