
Stat 230 Summer 2020 I

Notes on the moment generating function

For X a random variable, the moment generating function (mgf) is defined as:
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i.e. we associate to X a function ψX : IR→ IR, t 7→ IE[etX ].

The mgf may or may not be finite at any particular value of t, but the Taylor expansion
above tells us it will be 1 at t = 0. If the mgf is bounded around some interval [−δ, δ] of 0,
then the mgf uniquely determines the law of X.

Theorem 0.1. If the moment generating function ψX(t), ψY (t) of two random variables X
and Y , respectively, are finite and equal around any open interval around 0, then the law
of X is the law of Y .

This important theorem allows us to represent many familiar distributions in terms of other
distributions. The following Theorem is used in conjunction with Theorem 0.1 to show how
certain distributions arise as transformations of some other distributions.

Theorem 0.2. The following properties are true for the moment generating function ψ(t):

1) ψX(0) = 1

2) ψaX+b = ebtψ(at), t ∈ IR.

3) If X and Y are independent, then ψX+Y (t) = ψX(t)ψY (t), t ∈ IR.

4) If ψX(t) is finite in an open interval around zero, then it is infinitely differentiable at
zero.

First thing to note about this theorem is that the mgf of X allows us to compute moments
of X (hence the name)

Corollary 0.3. If the moment generating function ψX(t) of X is finite in an open interval
around zero, then
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Proof. Expectation is a linear operator and differentiable power series can be differentiated
by terms.
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The following example illustrates a typical use case on how the moment generating function
can be used to derive relations between distributions.

Example 0.4. Let X1, . . . , Xn be independent and identically distributed random variables
with distribution exp(λ). Then Y =

∑n
i=1Xi has the Gamma(n, λ) distribution.

Firstly, the moment generating function of Xi is, for t < λ:
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∫ ∞
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The moment generating function of Y is, for t < λ:
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∫ ∞
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On the last line we used a common trick in statistics: The integrand is density of a
Gamma(n, (λ− t)) random variable. Hence it integrates to 1.

Finally, by using Theorem 0.2 we see that

ψ∑n
i=1Xi

(t) =
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The moment generating functions of Y and
∑n

i=1Xi are the same, therefore the law of Y is
that of

∑n
i=1Xi by Theorem 0.1. We conclude we can construct Gamma random variable1

as a sum of iid exponentials.

1with the 1st parameter being a positive integer
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