
Sta-230: Probability Spring 2017

Supplemental notes for topic 9: April 4, 6

9.1 Polynomial inequalities

Theorem (Jensen). If φ is a convex function then φ(Ex) ≤ Eφ(x).

Theorem (Bienaymé-Chebyshev). For any random variable x, ε > 0

P(|x|≥ ε) ≤ Ex2

ε2
.

Proof
Ex2 ≥ E(x2I{|x|≥ε}) ≥ ε2P(|x|> ε). �

Theorem (Markov). For any random variable x, ε > 0

P(|x|≥ ε) ≤ Eeλx

eλε

and
P(|x|≥ ε) ≤ inf

λ<0
e−λεEeλx.

Proof

P(x > ε) = P(eλx > eλε) ≤ Eeλx

eλε
. �

9.2 Exponential inequalities

For the sums or averages of independent random variables the above bounds can be improved from polynomial
in 1/ε to exponential in ε.

Theorem (Bennet). Let x1, ..., xn be independent random variables with Ex = 0, Ex2 = σ2, and |xi|≤ M .
For ε > 0

P

(
|
n∑
i=1

xi|> ε

)
≤ 2e

−nσ2

M2 φ( εM
nσ2

),

where
φ(z) = (1 + z) log(1 + z)− z.

Proof

We will prove a bound on one-side of the above theorem

P

(
n∑
i=1

xi > ε

)
.
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P

(
n∑
i=1

xi > ε

)
≤ e−λεEeλ

∑
xi = e−λεΠn

i=1Eeλxi

= e−λε(Eeλx)n.

Eeλx = E
∞∑
k=0

(λx)k

k!
=

∞∑
k=0

λk
Exk

k!

= 1 +

∞∑
k=2

λk

k!
Ex2xk−2 ≤ 1 +

∞∑
k=2

λk

k!
Mk−2σ2

= 1 +
σ2

M2

∞∑
k=2

λkMk

k!
= 1 +

σ2

M2
(eλM − 1− λM)

≤ e
σ2

M2 (eλM−λM−1).

The last line holds since 1 + x ≤ ex.

Therefore,

P

(
n∑
i=1

xi > ε

)
≤ e−λεe

σ2

M2 (eλM−λM−1). (9.1)

We now optimize with respect to λ by taking the derivative with respect to λ

0 = −ε+
nσ2

M2
(MeλM −M),

eλM =
εM

nσ2
+ 1,

λ =
1

M
log

(
1 +

εM

nσ2

)
.

The theorem is proven by substituting λ into equation (9.1). �

The problem with Bennet’s inequality is that it is hard to get a simple expression for ε as a function of the
probability of the sum exceeding ε.

Theorem (Bernstein). Let x1, ..., xn be independent random variables with Ex = 0, Ex2 = σ2, and |xi|≤M .
For ε > 0

P

(
|
n∑
i=1

xi|> ε

)
≤ 2e

− ε2

2nσ2+ 2
3
εM .

Proof

Take the proof of Bennet’s inequality and notice

φ(z) ≥ z2

2 + 2
3z
. �
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Remark. With Bernstein’s inequality a simple expression for ε as a function of the probability of the sum
exceeding ε can be computed

n∑
i=1

xi ≤
2

3
uM +

√
2nσ2u.

P

(
n∑
i=1

xi > ε

)
≤ 2e

− ε2

2nσ2+ 2
3
εM = e−u,

where

u =
ε2

2nσ2 + 2
3εM

.

we now solve for ε

ε2 − 2

3
εM − 2nσ2ε = 0

and

ε =
1

3
uM +

√
u2M2

9
+ 2nσ2u.

Since
√
a+ b ≤

√
a+
√
b

ε =
2

3
uM +

√
2nσ2u.

So with large probability
n∑
i=1

xi ≤
2

3
uM +

√
2nσ2u. 4

If we want to bound

|n−1
n∑
i=1

f(xi)− Ef(x)|

we consider
|f(xi)− Ef(x)|≤ 2M.

Therefore
n∑
i=1

(f(xi)− Ef(x)) ≤ 4

3
uM +

√
2nσ2u

and

n−1
n∑
i=1

f(xi)− Ef(x) ≤ 4

3

uM

n
+

√
2σ2u

n
.

Similarly,

Ef(x)− n−1
n∑
i=1

f(xi) ≥
4

3

uM

n
+

√
2σ2u

n
.

In the above bound √
2σ2u

n
≥ 4uM

n

which implies u ≤ nσ2

8M2 and therefore

|n−1
n∑
i=1

f(xi)− Ef(x)|.
√

2σ2u

n
for u . nσ2,
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which corresponds to the tail probability for a Gaussian random variable and is predicted by the Central
Limit Theorem (CLT) Condition that limn→∞ nσ2 →∞. If limn→∞ nσ2 = C, where C is a fixed constant,
then

|n−1
n∑
i=1

f(xi)− Ef(x)|. C

n

which corresponds to the tail probability for a Poisson random variable.

We now look at an even simpler exponential inequality where we do not need information on the variance.

Theorem (Hoeffding). Let x1, ..., xn be independent random variables with Ex = 0 and |xi|≤Mi. For ε > 0

P

(
|
n∑
i=1

xi|> ε

)
≤ 2e

− 2ε2∑n
i=1

M2
i .

Proof

P

(
n∑
i=1

xi > ε

)
≤ e−λεEeλ

∑n
i=1 xi = e−λεΠn

i=1Eeλxi .

It can be shown

E(eλxi) ≤ e
λ2M2

i
8 .

The bound is proven by optimizing the following with respect to λ

e−λεΠn
i=1e

λ2M2
i

8 . �

Applying Hoeffding’s inequality to

n−1
n∑
i=1

f(xi)− Ef(x)

we can state that with probability 1− e−u

n−1
n∑
i=1

f(xi)− Ef(x) ≤
√

2Mu

n
,

which is a sub-Gaussian as in the CLT but without the variance information we can never achieve the 1
n

rate we achieved when the random variable has a Poisson tail distribution.

We will use the following version of Hoeffding’s inequality in later lectures on Kolmogorov chaining and the
Dudley’s entropy integral.

Theorem (Hoeffding). Let x1, ..., xn be independent random variables with P(xi = Mi) = 1/2 and P(xi =
−Mi) = 1/2. For ε > 0

P

(
|
n∑
i=1

xi|> ε

)
≤ 2e

− 2ε2∑n
i=1

M2
i .
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Proof

P

(
n∑
i=1

xi > ε

)
≤ e−λεEeλ

∑n
i=1 xi = e−λεΠn

i=1Eeλxi .

E(eλxi) =
1

2
eλMi +

1

2
e−λMi ,

1

2
eλMi +

1

2
e−λMi =

∞∑
k=0

(Miλ)2k

(2k)!
≤ e

λ2M2
i

2 .

Optimize the following with respect to λ

e−λεΠn
i=1e

λ2M2
i

2 . �

9.3 Strong law of large numbers

Lemma 9.1 (Borel-Cantelli). Consider a set of events {An : n ≥ 1} in a probability space. If

∞∑
n=1

P(An) <∞

then P(Anoccurs infinitely often) = 0.

The idea behind the Borel-Cantelli Lemma is that if an event happens finitely often and the state space
is infinite then the probability of the event heppening is zero. So we can say something happens with
probability zero.

We now use the Borel-Cantelli Lemma and the weak law of large numbers to prove the strong law of large
numbers.

Consider an infinite sequence of Bernoulli random variable X1, ...., Xn
iid∼ Be(p). We want to show that

P(limn→∞
Sn
n = p) = 1.

If we can show that P(|Sn|> nε i.o.) = 0 then P(limn→∞
Sn
n = p) = 1 because these are complementary

events.

To make notation easier we consider the case where p = 1/2 the generalization is straightforward. Consider
the event

An = {ω ∈ Ω : |Sn|≥ nε},

We have an exponential inequality for the above event since we know by Hoeffding’s inequality

P

(
|
n∑
i=1

xi|> nε

)
≤ 2e

− 2n2ε2∑n
i=1

12 ,

P

(
|
n∑
i=1

xi|> nε

)
≤ 2e−2nε

2

.
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So we now check if for all ε > 0
∞∑
n=1

P(An) ≤
∞∑
n=1

2e−2nε
2

<∞.

The sum of exponential tails is bounded so Borel-Cantelli holds and we see that for Bernoulli random
variables the strong law of large numbers holds.


