Midterm Practice Examination

Sta 230: Probability

June 3, 2020

This is a practice exam and not graded. The rules stated below don't apply, but should you wish to simulate the midterm, you may pretend they do.

This is an open notes open book exam, so you can consult your notes and the course books (Pitman/Durrett). You may use a calculator, R or such to evaluate complicated expressions, but you are not allowed to search the internet or ask anyone about the problems. You may express fractions as fractions (reduced to lowest terms), and report any numerical answers with 3 digits.

You must show your work to get partial credit. Even correct answers will not receive full credit without justification.

Write your solutions as clearly as possible and make sure it's easy to find your answers (circle them if necessary), since you will not receive credit for work that I cannot understand or find. Good Luck! **Problem 1:** A hand in bridge consists of thirteen cards dealt out from a well shuffled deck. A deck as 52 cards with four suits (hearts, clubs, diamonds, and spades).

- a. What is the probability that the bridge hand contains exactly 5 hearts?
- b. What is the probability that the bridge hand contains exactly 5 hearts and 5 spades?
- c. What is the probability that the hand contains exactly 5 cards from at least one suit?
- d. Given the first three cards are 3 hearts what is the probability the next two are spades ?

Problem 2: There are two possible distributions that you are drawing data from

$$\begin{array}{rcl} Y & \sim & \operatorname{Geometric}(p) \\ Y & \sim & \operatorname{Poisson}(\lambda) \end{array}$$

I run the following experiment n times identically and independently

- (1) $X \sim \operatorname{Be}(p = .3)$
- (2) If X is 1 then draw $Y \sim \text{Geometric}(p)$ If X is 0 then draw $Y \sim \text{Poisson}(\lambda)$.

What is $\mathbf{E}[Y]$?

Problem 3: $X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$

- 1. Define $Z = \frac{\sum_i X_i}{n}$, what is $\mathbf{E}[Z]$ and $\mathbf{V}[Z]$?
- 2. How do I compute transform the random variable Z into a standard normal variable W ?
- 3. Now suppose that $X_1, ..., X_n \stackrel{iid}{\sim} Bin(m, p)$ again define $Z = \frac{\sum_i X_i}{n}$. For what value of m, p would Z approximate the distribution in part (1) ?

Problem 4:

- 1. Let E, F and G be events. Prove or give counterexamples to the following statements:
 - a) If E is independent of F and E is independent of G, then E is independent of $F \cup G$.
 - b) If E is independent of F, and E is independent of G, and $F \cap G = \emptyset$, then E is independent of $F \cup G$.
 - c) If E is independent of F, and F is independent of G, and E is independent of $F \cap G$, then G is independent of $E \cap F$.
- 2. Let A and B be events having positive probability. State whether each of the following statements is (i) necessarily true, (ii) necessarily false, or (iii) possibly true.
 - a) If A and B are mutually exclusive, then they are independent.
 - b) If A and B are independent, then they are mutually exclusive.
 - c) Pr(A) = Pr(B) = 0.6, and A and B are mutually exclusive.
 - d) Pr(A) = Pr(B) = 0.6, and A and B are independent.

Problem 5: . A new drug for leukemia works 25% of the time in patients 55 and older, and 50% of the time in patients younger than 55. A test group consists of 17 patients 55 and older and 12 patients younger than 55.

- 1. A patient is chosen uniformly at random from the test group, the drug is administered, and it is a success. What is the probability the patient was in the older group?
- 2. A subgroup of 4 patients are chosen and the drug is administered to each. What is the probability that the drug works in all four patients?

Name:

Name: _

Problem 6 : . Suppose that the cumulative distribution function of the random variable X is given by

$$F_X(x) = 1 - e^{-x^2}, \ x > 0$$

Find

- a) $\Pr(X > 2)$
- b) $\Pr(1 < X < 3)$
- c) $\mathsf{E}[X]$
- d) Var(X)

Tal	ole 1						CDF fo	or Stan	dard N	ormal.
\mathbf{Z}	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
$\overline{0.0}$.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
05	6015	6050	COSE	7010	7054	7099	7199	7157	7100	7994
0.5	.0910	.0950	.0900	.7019	7280	.7000	7454	7496	.7190	7540
0.0	7590	.7291	.1324	.1301	.1309	.1422	.7404	.7400	.7017	7959
0.7	7001	7010	.7042	7067	7005	.//34 0002	2051	.1194	.1020	.1002 0199
0.0	0150	.7910	.7939	.1901	.1995	.0023	.0001	.0010	.0100	.0100
0.9	.8159	.0100	.8212	.0200	.8204	.0209	.6910	.8340	.8909	.0309
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
15	0332	0345	0357	9370	0382	0304	9406	0/18	0420	0441
1.0	9452	9463	9474	9484	.9502 9495	9505	.9400 9515	9525	9535	9545
1.0	9554	9564	9573	9582	9591	9599	9608	9616	9625	9633
1.1	06/1	9649	9656	9664	.5551 9671	9678	9686	0603	9699	9706
1.0	0713	0710	0726	0732	0738	9744	9750	9756	9761	9767
1.5	.5110	.0110	.5120	.0102	.0100	.0111	.5100	.5100	.0101	.5101
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
25	0038	9940	9941	9943	9945	9946	9948	9949	9951	9952
$\frac{2.0}{2.6}$	9953	9955	9956	9957	9959	9960	9961	9962	9963	9964
$\frac{2.0}{2.7}$	9965	9966	9967	9968	9969	9970	9971	.000 <u>2</u> 9972	9973	9974
$\frac{2.1}{2.8}$	9974	9975	9976	9977	9977	9978	9979	9979	9980	9981
$2.0 \\ 2.9$.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
0.674	(5) = 0.	75 Φ	(1.6449)) = 0.9	05Φ	(2.3263)	(3) = 0.9	9 Φ	(3.0902)	(2) = 0.99
1.281	(6) = 0.	90 Φ	(1.9600)) = 0.9	975 Φ	(2.5758)	(3) = 0.9	95 Φ	(3.2905)	(0) = 0.99

Distributions

Binomial	$\Pr[X=x]$	=	$\binom{n}{x} p^x q^{(n-x)}, \ x = 0, 1, \dots, n$	$\mu=np,\ \sigma^2=npq$
Poisson	$\Pr[X=k]$	=	$\lambda^k e^{-\lambda}/k!, \ k=0,1,\ldots$	$\mu=\lambda,\ \sigma^2=\lambda$
Poisson process	$\Pr[X = k t]$	=	$(\alpha t)^k e^{-\alpha t}/k!, \ k = 0, 1, \dots$	
Geometric	$\Pr[X = x]$	=	$pq^x, y = 0, 1, 2, \dots$	$\mu=q/p,~\sigma^2=q/p^2$
Hypergeometric	$\Pr[X=x]$	=	$\frac{\binom{N}{x}\binom{N}{n-x}}{\binom{N}{n}}, \ x = 0, 1, 2, \dots$	$\mu = n \frac{M}{N}$
				$\sigma^2 = \tfrac{N-n}{N-1} n \tfrac{M}{N} (1 - \tfrac{M}{N})$
Exponential	$\Pr[X \le x]$	=	$1 - e^{-\lambda x}, \ x \in (0, \infty)$	$\mu=1/\lambda,~\sigma^2=1/\lambda^2$
	f(x)	=	$\lambda e^{-\lambda x}, \ x > 0; \ 0, \ x \le 0$	
Uniform	$\Pr[X \le x]$	=	$(x-a)/(b-a), \ x \in (a,b)$	$\mu = \frac{a+b}{2}, \ \sigma^2 = \frac{(b-a)^2}{12}$
	f(x)	=	$\frac{1}{b-a}, \ a < x < b; \ 0, \ x \notin (a,b)$	
Normal	$\Pr[X \le x]$	=	$\Phi(\frac{x-\mu}{\sigma}), \ x \in \mathbb{R}$	$\mu=\mu,~\sigma^2=\sigma^2$
	f(x)	=	$\frac{1}{\sqrt{2\pi\sigma}}e^{-(x-\mu)^2/2\sigma^2}, \ x \in \mathbb{R}$	

$$P_k^n = \frac{n!}{(n-k)!} = \overbrace{(n)(n-1)\cdots(n-k+1)}^{k \text{ terms}}$$

"*n* choose *k*": $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{(n)(n-1)\cdots(n-k+1)}{(k)(k-1)\cdots(1)}$

Page 8 of 10

June 3, 2020

$$\begin{aligned} &(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} \\ &\sum_{k=0}^\infty ar^k = a/(1-r) \\ &\Pr[X \leq x] = F(x) = \int_{-\infty}^x f(t) \, dt \\ & \mathsf{E}[g(X)] = \int g(x) f(x) \, dx \\ & \mathsf{E}[g(X)] = \int g(x) f(x) \, dx \\ & \mu = \mathsf{E}[X] = \int_{-\infty}^\infty xf(x) \, dx \\ & \mu = \mathsf{E}[X] = \int_{-\infty}^\infty xf(x) \, dx \\ & \sigma^2 = \mathsf{E}[(X-\mu)^2] = \mathsf{E}[X^2] - \mu^2 \\ &A \text{ and } B : A \cap B \\ &\mathsf{P}[A|B] = \mathsf{P}[A \cap B]/\mathsf{P}[B] \\ &\mathsf{P}[A \cap B] = \mathsf{P}[A|B] \mathsf{P}[B] \\ &\mathsf{P}[A \cap B] = \mathsf{P}[A|B] \mathsf{P}[B] \\ &\mathsf{P}[A \cup B] = \mathsf{P}[A|B] \mathsf{P}[B] \\ &\mathsf{Independent} \Leftrightarrow \mathsf{P}[A \cap B] = \mathsf{P}[A] \mathsf{P}[B]; \\ &\mathsf{Bayes:} \ \mathsf{P}[A_i|B] = \frac{\mathsf{P}[B|A_i]\mathsf{P}[A_i]}{\mathsf{P}[B|A_1]\mathsf{P}[A_1] + \ldots + \mathsf{P}[B|A_k]\mathsf{P}[A_k]} \\ &\mathsf{Sterling:} \ n! \approx \sqrt{2\pin} \left(\frac{n}{e}\right)^n \end{aligned}$$

Continuous

Discrete

Conf. Intervals	$\mu = \bar{x} \pm z_{\alpha/2} S / \sqrt{n}$	Large Sample
	$=ar{x}\pm t_{lpha/2}S/\sqrt{n}$	Small Sample (normal)
	$p = \hat{p} \pm z_{lpha/2} \sqrt{\hat{p} \hat{q} / n}$	Population Proportion
Diff. of Means	$\mu_1 - \mu_2 = (\bar{x}_1 - \bar{x}_2) \pm z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	Large Samples
	$= (\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	Small Samples
	$=\overline{x_1-x_2}\pm z_{lpha/2}s_{\Delta}/\sqrt{n}$	Matched Pairs, large n
	$=\overline{x_1-x_2}\pm t_{lpha/2}s_\Delta/\sqrt{n}$	Matched Pairs, small n , normal

