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Key ideas for topic 18: Bivariate Normal Distribution June 15

A pair of random variables (X,Y ) are distributed according to the bivariate normal distribution, if any linear
combination aX + bY is normally distributed.

A bivariate normal distribution is completely characterized by 5 numbers (parameters) that are µX , σ
2
X , µY , σ

2
Y , ρXY .

Marginal distributions

X ∼ Normal(µX , σ
2
X)

Y ∼ Normal(µY , σ
2
Y ).

The conditional distributions

X|Y ∼ Normal(µX + ρXY
σX
σY

(Y − µY ), (1− ρ2
XY )σ2

X)

Y |X ∼ Normal(µY + ρXY
σY
σX

(X − µX), (1− ρ2
XY )σ2

Y ).

The normal distribution in the formulae above is that of a univariate normal: if X ∼ Normal(µ, σ2), then
X has the density

fX(x) =
1√

2πσ2
e−

1
2σ2

(x−µ)2 .

Multivariate normal distribution (Out of the scope of this course)

More generally, a multivariate normal distribution is a vector-valued distribution of (X1, . . . , Xn) and it has
parameters mean vector µ of length n and an n× n covariance matrix Σ.

The multivariate normal distribution has the density

f(X1,X2,...,Xn)(x) =
1√

(2π)nDet(Σ)
e−

1
2 (x−µ)′Σ−1(x−µ),

where Σ is a symmetric positive definite matrix.
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Chebyshev inequality: For a random variable X

P(|x|≥ ε) ≤ Ex2

ε2
.

Weak law of large numbers: For random variables X1, ..., Xn
iid∼ f with σ2 <∞ define Sn = X1 +X2 +

· · ·+Xn

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ ε) ≤ 1

ε2

σ2

n
,

lim
n→∞

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ ε) = 0, ∀ε > 0.

Strong law of large numbers: Define the event

E =

{
ω ∈ Ω : lim

n→∞

Sn(ω)

n
= µ

}
,

as an infinite random sample ω = {X1, ..., Xn, ...} for which the sample mean is equal to the true mean. The
strong law of large number states that

P(E) = 1,

and holds if σ2(Xj) <∞ and E(X4
J) <∞ for all j.
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Central limit theorem: Given a sequence of {X1, ..., Xn} of iid random variables with E[Xi] = µ and
Var[Xi] = σ2 <∞

lim
n→∞

1
n

∑
iXi − µ
σ/
√
n

d
= N(0, 1).

Convergence in probability: A sequence of random variables {X1, ..., Xn} converges to a distribution F
if

lim
n→∞

Pr(Xn < z) = F (z), ∀z

where F (z) is the cdf.

Convergence in probability means the distribution function converges.
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Markov Chain

A stochastic process Xk with discrete index set k = 1, . . . is a discrete-time Markov Chain if

Pr(Xn|X1, . . . , Xn−1) = Pr(Xn|Xn−1)

for all n.

Transition vectors

If the random variables Xk take a finite set of values a1, . . . , an, the transition distribution Pr(Xn|Xn−1 = aj)
is a vector:

pj := {p1,j , p2,j , . . . , pn,j}

with pi,j = Pr(Xm = ai|Xm−1 = aj), and naturally
∑n
i=1 pi,j = 1.

State space The values a1, . . . an are called the states of the process and a Markov process with finitely
many states is called a finite-state Markov process.

Transition matrix

Stacking the vectors pj together we get the transition kernel that we can conveniently express as a matrix:

P =


p1

p2

...
pn

 =


p1,1 p2,1 . . . pn,1
p1,2 p2,2 . . . pn,2

...
p1,n p2,n . . . pn,n


The Markov chain is time homogeneous if the kernel/matrix doesn’t depend on m (No pi,j depends on
m).

The transition matrix allows us to compute the marginal distribution p(Xm+1) of Xm+1 if we know the
distribution p(Xm) of Xm:

p(Xm+1) = p(Xm)


p1,1 p2,1 . . . pn,1
p1,2 p2,2 . . . pn,2

...
p1,n p2,n . . . pn,n



which we can compute as vector p(Xm) multiplied (from right) by matrix P.



The kth step transition kernel gives the conditional probability Pr(Xm+k|Xm), and (for a time homogeneous
process) it is obtained as a matrix power Pk.

Infinite state space (not in the scope of this course)

For continuous distributions, a Markov Kernel may be expressed as a transition density K(x, y) that satisfies

fXm(x) =

∫ ∞
−∞

K(x, y)fXm−1(y) dy.

These are used in Gibbs’ sampling, which is an example of a Markov Chain Monte Carlo method that has
very important applications in Bayesian statistics.
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Stationary Distribution

A discrete-time Markov space with finite state space has a stationary distribution π if

π = πP

for P the transition matrix.

Aperiodic

A state is B aperiodic, if there exists and N such that Pr(XM = B|X0 = B) > 0 holds for all M ≥ N . The
chain is aperiodic if all the states are.

Irreducibility

If for any pair i, j, there exists m ∈ Z+ such that Pr(Xk+m = ai|Xk = aj) > 0. In this case the chain is said
to be irreducible, which implies the stationary distribution exists and is unique.

If we can find an m such that Pr(Xk+m = ai|Xk = aj) > 0 hold simultaneously for all pairs (i, j), then the
stationary distribution is given by the

π = lim
m→∞

p0P
m,

for any arbitrary initial state distribution p0. Such Markov chains are called regular and the transition
matrix primitive, and this condition holds whenever the chain is aperiodic and irreducible.


