
Sta-230: Probability Summer I 2020

Key ideas for topic 11: Continuous distributions May 29

Cumulative distribution: The cumulative distribution function (CDF) for a continuous random variable
X is

F (z) = P(X ≤ z) =

∫ z

−∞
p(x)dx,

where p(z) is the probability density function (pdf) for a random variable x

p(x) = lim
δ→0

P (x− δ/2 ≤ x ≤ x+ δ/2)

δ
.

A standard way of thinking about the pdf is via the cdf

p(x) =
dF (x)

dx
.

Expectation: The population mean. For a continuous random variable X

µ = E[X] =

∫
x

x p(x)df,

Linearity of expectations. For a collection of random variables X1, ..., Xn

E

[∑
i

Xi

]
=
∑
i

E[Xi].

Expectation of a function f(s) given a random variable X is

E[f(x)] =

∫
x

f(x)p(x)dx.

Variance: The variance of a random variable measures its spread. For a continuous random variable X

σ2 = Var(X) =

∫
x

(x− µ)2p(x)dx.

The standard deviation is σ =
√

Var(X).

The uniform distribution: The uniform distribution is perhaps the most simple continuous distribution.
A random variable X follows the uniform distribution on [0, 1], denoted as X ∼ U(0, 1), if X has density

fX(x) = 1, 0 < x < 1,

and 0 otherwise. In general if Y = aX + b, and X as above, then Y follows the uniform distribution
Y ∼ U(b, a+ b). This can be asserted by looking at the cumulative distributions of X and Y .

Another example of a continuous distribution is the normal distribution that we have seen in binomial
approximation.
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Exponential distribution: A random variable X follows the exponential distribution with mean 1/λ,
λ > 0 if the density of X is

fX(x) = λe−λx, x ≥ 0,

and 0 otherwise. The exponential distribution can be seen as the continuous analog of the geometric distri-
bution. The exponential distribution is a special case of the

Gamma distribution: A random variable X follows the gamma distribution with parameters k, λ, (k, λ >
0) if it has the density

fX(x) =
λk

Γ(k)
xk−1e−λx, x ≥ 0,

and 0 otherwise. The gamma function is a generalization of the factorial Γ(k) = (k − 1)! for k a positive
integer. In that case the Gamma distribution can be seen as the sum of k independent exponential random
variables, each with parameter λ.

Both of these distributions can be studied via a Poisson process Nt. This is an example of a stochastic
process, where for each t ≥ 0 we assign a Poisson random variable Nt := Nt−0 ∼ Poisson(λt). In the
Poisson process the random variables are connected such that N[t4−t3] and N[t2−t1] are independent whenever
t1 < t2 < t3 < t4.

The arrival times Tk of the process follow the Gamma distribution with parameters k, λ, and the inter-arrival
times (time between consecutive arrivals) are iid exponential with parameter λ.
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Change of variables: For a random variable X with denisty pX(x) and range (a, b) and Y = g(X) where
g is strictly increasing or decreasing on (a, b) with X = v(Y ) (v = g−1) the density of Y is

pY (y) = pX(x)×
∣∣∣∣dydx

∣∣∣∣−1,
pY (y) = pX(v(y))× v′(y),

over u(a) < y < u(b).

This is a consequence of the chain rule applied to the CDFs of X and Y .

Moment generating function (mgf): For X a random variable, the mgf is defined as:

ψX(t) = E[etX ], t ∈ (−∞,∞).

If the mgf is finite in an open interval around t = 0, it completely determines the law of the random variable
X. For such random variables, The MGF can be used to find moments of X (kth moment is the kth
derivative evaluated at t = 0) or to find the distribution of sum of iid random variables.


