Stat 230

May 19 Demo/ Practice problems

All the problems are ungraded.

Pr. 1 Pitman 1.6.1

Pr. 2 Pitman 1.6.5

Pr. 3 Pitman 1.6.8

Pr. 4 Write A_i for the event that it rains on day i.

Suppose that A_i satisfy the Markov condition¹:

$$\Pr(A_n|A_{n-1}, A_{n-2}, \dots, A_2, A_1) = \Pr(A_n|A_{n-1}), n \in \{0, 1, \dots\},\$$

I.e., if we want to predict if it rains tomorrow, we only need to know if it rains today, the rest of the raining history doesn't matter.

- a) Use the multiplication rule to write $Pr(A_1, A_2, A_3, A_4, A_5)$ in terms of $Pr(A_1)$ and some conditional probabilities.
- b) Are the events A_1 and A_5 independent?
- c) Is there an event B such that A_1 , A_5 are conditionally independent given B? Find such B or argue why there cannot be one.
- d) Let $Pr(A_n|A_{n-1}) = 0.7$ and $Pr(A_n|A_{n-1}^c) = 0.2$ for all n. It rains today. What is the probability that it rains day after tomorrow?

¹Such stochastic processes are called *Markov chains*.