Key ideas for topic 1: Equally likely outcomes

You should understand the idea of a **sample space and events**. Also start to understand the relation between probability and sets and be able to compute the probability of events.

The naiive definition of probability: If the sample space S (outcome space) is finite, and all the outcomes are equally likely:

$$
Pr(A) = \frac{\text{\#outcomes favorable to } A}{\text{\#outcomes in } S}.
$$
\n(1.1)

You should start thinking about Interpretations of probability:

Symmetry: If there are k equally-likely outcomes E, each has $P(E) = 1/k$;

Frequency: If you can repeat an experiment indefinitely, $P(E) = \lim_{n \to \infty} \frac{\#E}{n}$;

Belief: If you are indifferent between winning \$1 if E occurs or winning \$1 if you draw a blue chip from a box with 10000 chips of which $100 \times p$ are blue chips, then $P(E) = p$.

Key ideas for topic 2: Axioms of Probability

You should know the **axioms of probability**. The probability P of some event E must satisfy a set of rules which were laid out by Kolmogorov (Kolmogorov's axioms):

- (1) Nonnegative: $P(E) \ge 0$
- (2) Addition: $P(E \cup F) = P(E) + P(F)$ if $E \cap F = \emptyset$
- (3) Countable addition: $\mathbf{P}(\cup_i E_i) = \sum_i \mathbf{P}(E_i)$ if $E_i \cap E_j = \emptyset$ for $i \neq j$. Each E_i is called a countable partition.
- (4) Sum to one: $\mathbf{P}(\Omega) = 1$.

Key ideas for topic 3: Conditional Probability and Independence

Conditional probability: The conditional probability of an event A given an event B is

$$
\mathbf{P}(A | B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)} = \frac{\mathbf{P}(A, B)}{\mathbf{P}(B)} = \frac{\mathbf{P}(AB)}{\mathbf{P}(B)},
$$

or

$$
\mathbf{P}(A, B) = \mathbf{P}(B)\,\mathbf{P}(A \mid B).
$$

Independence: Events A, B are independent if knowing B gives no information on A and vice versa

$$
\mathbf{P}(A \mid B) = \mathbf{P}(A), \quad \mathbf{P}(B \mid A) = \mathbf{P}(B), \quad \mathbf{P}(AB) = \mathbf{P}(A)\mathbf{P}(B).
$$

Key ideas for topic 4: Bayes' Rule, Law of Total Probability

Total probability: Given a partition $\{A_1, ..., A_n\}$ of the state space Ω one can compute the total probability of an event ${\cal B}$ as

$$
\mathbf{P}(B) = \sum_{i=1}^{n} \mathbf{P}(B \mid A_i) \mathbf{P}(A_i).
$$

Bayes rule: Allows you to compute $P(A | B)$ from $P(B | A)$, $P(B)$, and $P(A)$

$$
\mathbf{P}(A \mid B) = \frac{\mathbf{P}(B \mid A)\mathbf{P}(A)}{\mathbf{P}(B)}.
$$

For the case of a partition $\{A_1,...,A_n\}$

$$
\mathbf{P}(A_i \mid B) = \frac{\mathbf{P}(B \mid A_i) \mathbf{P}(A_i)}{\sum_i \mathbf{P}(B \mid A_i) \mathbf{P}(A_i)}.
$$

Key ideas for topic 5: Thinking Conditionally

Multiplication rule:

$$
Pr(A_1, A_2, ..., A_n) = Pr(A_n | A_1, A_2, ..., A_{n-1}) Pr(A_1, A_2, ..., A_{n-1})
$$

= Pr(A_n | A_1, A_2, ..., A_{n-1}) Pr(A_{n-1} | A_1, A_2, ..., A_{n-2}) Pr(A_1, A_2, ..., A_{n-2})
:
= Pr(A_n | A_1, A_2, ..., A_{n-1}) ... Pr(A_2 | A_1) Pr(A_1)

Conditional independence: If $Pr(AB|C) = Pr(A|C)Pr(B|C)$, A and B are said to be conditionally independent given C. Conditional independence, in general, does not imply independence nor vice versa.

Pairwise independence: If for A_1, A_2, A_3 Pr(A_iA_j) = Pr(A_i) Pr(A_j) for $i \neq j \in \{1, 2, 3\}$, A_1, A_2, A_3 are said to be pairwise independent. This does not imply A_1, A_2, A_3 are independent, for which we also need $Pr(A_1, A_2, A_3) = Pr(A_1) Pr(A_2) Pr(A_3).$