STA230 June 11 Demo/ Practice problems

All the problems are ungraded.

- Pr. 1 Pitman 6.2.4
- Pr. 2 Pitman 6.2.5
- Pr. 3 Pitman 6.2.9(a)(b)
- Pr. 4 Pitman 6.2.12
- Pr. 5 Pitman 6.3.4

elements appear in a random ordering of n good and N-n bad elements. (In terms of a shuffled deck of N cards with n aces, T_i represents the place in the deck where the ith ace lies.) Let $W_1 = T_1 - 1$, the number of bad elements before the first good

13. Discrete spacings. As in Exercise 12, let $T_1 < \ldots < T_n$ be the places that good

- one. For $2 \le i \le n$, let $W_i = T_i T_{i-1} 1$, the number of bad elements between the (i-1)th and ith good ones. Let $W_{n+1} = N - T_n$, the number of bad elements after the last good one. Think of the W_i as spacings between the good elements. a) Find the joint distribution of W_1, \ldots, W_{n+1} .
 - b) Show that the n+1 random variables W_1, \ldots, W_{n+1} are exchangeable, hence identically distributed, but not independent.
 - c) Find a formula for $P(W_i = w)$ for $0 \le w \le N$.

 - d) Find $E(W_i)$ for $1 \le i \le n+1$ and $E(T_i)$ for $1 \le i \le n$. [Hint: Use the symmetry.]
 - Evaluate in the case N=52 and n=4 to find the mean number of cards between
 - any two aces, and the mean position in the deck of the ith ace. (See Chapter 6

 - Review Exercise 29 for the variance.)
 - e) Show that for $1 \le i < j \le n+1$ the random variable $W_i + W_j$ has the same
 - distribution as $T_2 2$. Deduce from Exercise 12c) a formula for $P(W_i + W_j = t)$
 - for $0 \le t \le N$.
 - f) Let $D_n = T_n T_1 1$, the number of elements between the first and last good
 - elements (including the other n-2 good ones). Use the result of e) to find a formula for $P(D_n = d)$, $0 \le d \le N$, and find $E(D_n)$.
 - a) Uniform on all ordered (n + 1)-tuples of non-negative integers with sum
- 3.6.13. N-n c) $(N-n)_w n/(N)_{w+1}$ d) $E(W_i) = (N-n)/(n+1)$,

- $E(D_n) = \frac{(n-1)(N+1)}{(n+1)} 1$
- f) $P(D_n = d) = P(W_1 + W_{n+1} = N 2 d)$. Now use e).
- $E(T_i) = i(N+1)/(n+1), 9.6, 10.6, 21.2, 31.8, 42.4$ e) $\frac{\binom{n}{1}\binom{N-n}{t}}{\binom{N-1}{N-t-1}} \frac{(n-1)}{(N-t-1)}$